
 

   

 

Company Count Application 

Overview 

Your task is to create a Web application using Django. The application will allow users to login and filter the 

database table using a form. 

 

Once the user submits the form, display the count of records based on the applied filters. 

 

Technical Requirements 

1. Project Setup 
• Framework: The application should be built using the Django framework to leverage its performance 

and modern features. Name the application as catalyst-count. 
• Programming Language: Python 3.x 
• Virtual Environment: Use virtual environments to manage Python packages. 
 

2. Database Configuration 
• Database: PostgreSQL. It should store user data and the uploaded CSV data. 
• ORM: Utilize Django ORM to facilitate database interactions. 
• Company Data Model: Download the test data set from here. Create a model schema (table) by as per 

the data set. Import this csv into a Postgres table. 
 

3. Environment and Repository 
• Environment Variables: Securely manage environment variables using django-environ. 
• Version Control: Initialize a Git repository to maintain the project versioning. Host the project on 

GitHub or Bitbucket. 
 

4. Authentication 
• User Authentication: Implement user session authentication using django-all-auth. 
 

5. File Upload and Processing 
• File Upload: Implement a file upload mechanism capable of handling large files (up to 1GB) with a 

visual progress indicator. 
• Background Processing:  Upload file and update the database asynchronously to prevent blocking the 

request-response cycle. 
• Data Model: Design and implement models to store & retrieve the CSV data efficiently in PostgreSQL. 

 
6. User Interface 

https://www.dropbox.com/s/at6f63rdznw4bqs/free-7-million-company-dataset.zip?dl=0


 

   

 

• Template Engine: Utilize Django template engine for front-end design to ensure a responsive and 
intuitive user interface. Feel free to use Bootstrap 4 to create your own UI. 

• Pages: The application should include the following pages:  
1. Login Page: For user authentication. 
2. Upload Data Page: Allows users to upload CSV files. 
3. Query Builder Page: Enables users to filter the uploaded data and query & view the count of 

records matching the filters.  
4. DRF API: Querying should be done using an API. Use DRF to create this API.   
5. User Management Page (Optional): For viewing and managing user accounts. 

 
7. Documentation 

• README.md: Include a README file in the repository with detailed setup instructions, environment 
configuration steps, and how to run tests. 

 
8. Testing (Optional) 

• Unit Testing: Write unit tests for all functionalities, focusing on the file upload process, database 
operations, and query builder logic. 

 
9. Containerization using Docker (Optional) 

• DockerFile: Package your application and all its dependencies together in the form of container. 

Functional Requirements 

10. User Authentication 
• Users must be able to register, log in, and log out. 
• Only authenticated users must be able to interact with application features. 
 

11. Data Upload and Management 
• Users should be able to upload CSV files up to 1GB in size. 
• The system must provide feedback on the upload progress. 
• Once uploaded, the system processes the file in the background and updates the database with the 

new data. 
 

12. Data Interaction 
• Users should be able to apply filters to the data through a query builder interface. 
• The application displays the count of records that match the applied filters. 
 

13. User Interface 
• The interface should be user-friendly, responsive, and accessible on various devices and screen sizes. 
• Ensure secure and accessible forms for data entry and authentication. 



 

   

 

Non-functional Requirements 

14. Performance 
• The application should handle large file uploads and data processing efficiently without significant 

delays. 
• Optimize database queries to handle large datasets effectively. 

 
15. Scalability 

• The system should be designed to accommodate an increasing amount of data and users. 
 

16. Security 
• Adhere to best practices for web security to protect sensitive data and prevent common vulnerabilities. 

Deliverables 

1. Source code hosted on a public Git repository on GitHub. 
2. A functional web application ready to be deployed to a development server. 
3. Documentation including setup instructions, environment variable configuration, and test execution 

details. 
4. A suite of unit tests covering critical functionalities (Optional) 

Sample UIs 

The following are the approximate reference UIs for the task.  

Application Login 

 
 



 

   

 

Query Builder 

 

Upload Data 

 

Users 
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