PLEASE SIGN

PLEASE STAMP IN HERE
IN HERE
Company Count Application | PLEASE SIGN
Overview

Your task is to create a Web application using Django. The application will allow users to login and filter the
database table using a form.

Once the user submits the form, display the count of records based on the applied filters.

. . PLEASE STAMP
Technical Requirements IN HERE

1. Project Setup
* Framework: The application should be built using the Django framework to leverage its performance
and modern features. Name the application as catalyst-count.
¢ Programming Language: Python 3.x
¢ Virtual Environment: Use virtual environments to manage Python packages.

2. Database Configuration
e Database: PostgreSQL. It should store user data and the uploaded CSV data.
¢ ORM: Utilize Django ORM to facilitate database interactions.
e Company Data Model: Download the test data set from here. Create a model schema (table) by as per
the data set. Import this csv into a Postgres table.

3. Environment and Repository
* Environment Variables: Securely manage environment variables using django-environ.
¢« Version Control: Initialize a Git repository to maintain the project versioning. Host the project on
GitHub or Bitbucket.

4. Authentication
¢« User Authentication: Implement user session authentication using django-all-auth.

5. File Upload and Processing
¢ File Upload: Implement a file upload mechanism capable of handling large files (up to 1GB) with a
visual progress indicator,
e Background Processing: Upload file and update the database asynchronously to prevent blocking the
request-response cycle.
o Data Model: Design and implement models to store & retrieve the CSV data efficiently in PostgreSQL.

6. User Interface



o Template Engine: Utilize Django template engine for front-end design to ensure a responsive and
intuitive user interface. Feel free to use Bootstrap 4 to create your own UL

¢ Pages: The application should include the following pages:
1. Login Page: For user authentication.
2. Upload Data Page: Allows users to upload C5V files.

3. Query Builder Page: Enables users to filter the uploaded data and query & view the count of
records matching the filters.

4. DRF API: Querying should be done using an API. Use DRF to create this API.
5. User Management Page (Optional): For viewing and managing user accounts.

7. Documentation
e README.md: Include a README file in the repository with detailed setup instructions, environment
configuration steps, and how to run tests.

8. Testing (Optional)

e Unit Testing: Write unit tests for all functionalities, focusing on the file upload process, database
operations, and query builder logic.

9. Containerization using Docker (Optional)

¢ DockerFile: Package your application and all its dependencies together in the form of container.
Functional Requirements

10. User Authentication
¢ Users must be able to register, login, and log out.

¢ Only authenticated users must be able to interact with application features.

11. Data Upload and Management
e Users should be able to upload CSV files up to 1GB in size.
¢ The system must provide feedback on the upload progress.

* Once uploaded, the system processes the file in the background and updates the database with the
new data.

12. Data Interaction
» Users should be able to apply filters to the data through a query builder interface.

¢ The application displays the count of records that match the applied filters.

13. User Interface

¢« Theinterface should be user-friendly, responsive, and accessible on various devices and screen sizes.
e Ensure secure and accessible forms for data entry and authentication.



Non-functional Requirements

14. Performance
e The application should handle large file uploads and data processing efficiently without significant
delays.
e Optimize database queries to handle large datasets effectively.

15. Scalability
e The system should be designed to accommodate an increasing amount of data and users.

16. Security
e Adhere to best practices for web security to protect sensitive data and prevent common vulnerabilities.

Deliverables

1. Source code hosted on a public Git repository on GitHub.
2. Afunctional web application ready to be deployed to a development server.
3. Documentation including setup instructions, environment variable configuration, and test execution

details.
4. A suite of unit tests covering critical functionalities (Optional)

Sample Uls
The following are the approximate reference Uls for the task.

Application Login

Lagin to Continue

LMsarmairme

*




Query Builder

Uplcad Dala Cluery Builder Lsers Logout
ﬁ 342 records found for the query
Query Builder
Hﬂg.rﬂmd IFickiahny - Yaar Foundad
Ciky - Sisia - Couniry
Employanss [From) - Employass [To) -
Querny Date Rased
Upload Data
Upload Data Cuery Builder Users Logout
Upload Data
Saloct File
Upload Progress
Users
Updcad Data Quary Builder Users Logout
& Mew user added b4
Users
John Doe johndoed@gmail.com Active g
Jane Do jAnedosfBgmail com Aclive E
Johny Doa Johny. does@gmail.com Activa a




